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bstract

In this study, the growth of the indigenous Acidithiobacillus thiooxidans was predicted using artificial neural network (ANN). Four important
ariables of the growth medium: KH2PO4, (NH4)2SO4, MgSO4, and elemental sulfur (S0) were fed as input into the ANN model, while the dry
ell weight (DCW) was the output. The ANN model adopted in this study, consisting of an input layer, a hidden layer, and an output layer, was
ound to give satisfactory results. Among different combinations of 10 mostly used transfer functions, Gaussian and Sigmoid transfer functions
ere selected for the hidden and the output layers, respectively, to minimize the error between the experimental results and the estimated outputs.
xperimental data were randomly separated into a training set and a test set with 22 and 8 experimental runs, respectively. The resulting ANN
hows satisfactory prediction of the DCW with R2 = 0.991 and mean relative deviation (RD) = 0.026. The optimal medium composition of the

ndigenous A. thiooxidans was further predicted to be KH2PO4 = 1.0 g/l, (NH4)2SO4 = 3.5 g/l, MgSO4 = 0.65 g/l, and S0 = 23 g/l with the optimal
CW being 0.722 g/l. The results of this study suggest that ANN provides a powerful tool in studying the nonlinear and time-variant biological
rocesses.

2007 Published by Elsevier B.V.
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. Introduction

Acidithiobacillus spp. (e.g., Acidithiobacillus thiooxidans
nd Acidithiobacillus ferrooxidans), playing an important role in
he sulfur cycle in the biosphere, can enhance the metal bioleach-
ng rate from sulfides. The capability of producing acidophilic
onditions by utilizing energy directly from inorganic sulfur
ompounds allows them to be widely used in the bioleaching
rocesses [1]. Although the advantages of bioleaching are its
elatively low cost, the mild conditions of the process, and the

ubsequent low demand for energy or landfill space compared
ith conventional technologies, the kinetics of bioleaching
echanisms is still poorly understood. Moreover, to meet the
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ndustrial requirements, it is desired to harvest a large quantity
f cells in the logarithmic growth phase, in which cells exhibit
relatively high growth rate and subsequently produce a rela-

ively high amount of sulfuric acid. In other words, higher cell
oncentration and sulfuric acid production have to be attained
n order to achieve higher bioleaching efficiency. However, A.
hiooxidans does not grow readily, and its cell and sulfuric acid
oncentrations are usually very low [2]. The highest cell and
ulfuric acid concentrations obtained by conventional shaking
ask cultivation were about 0.224 g/l [3] and 15,000 ppm [4],
espectively, in 8–11 days.

Previously, several mathematical models have been devel-
ped to predict the growth or bioleaching behaviors of
cidithiobacillus spp. [5–11]. However, the multiplicity of the

actors taken into consideration in microbial growth or bioleach-

ng process complicates the model development using classical
tatistical techniques. Thus, a satisfactory mathematical model
escribing the highly nonlinear behaviors of bacterial growth
nd bioleaching is still difficult to find [5]. In this regard, the

mailto:f10894@ntut.edu.tw
dx.doi.org/10.1016/j.cej.2007.04.024
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Nomenclature

ANN artificial neural network
bk the bias of kth output neuron
Bj the bias of jth hidden neuron
d the total number of input neurons
DCW dry cell weight
DOE design of experiments
DEST estimated values
DEXP experimentally determined values
ESS error sum of squares
f transfer function
g transfer function
m the total number of hidden neurons
M the slope of the estimated and experiment dry cell

weight
MLP multi-layer feedforward perceptron network
MSE mean squared error
n the total number of the test data
Nj the output of jth hidden neuron
RD mean relative deviation
RSM response surface methodology
S0 elemental sulfur
Wi,j the weight between ith input neuron and jth hid-

den neuron
Wk,j the weight between jth hidden neurons and kth

output neuron
Xi the output of ith input neuron
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Yk the output of kth output neuron

egression model becomes a common practice for such systems.
owever, it may give erroneous results due to the wrong esti-
ation of the regression coefficients. In contrast, approximation
odels such as artificial neural networks (ANNs) provide a very

owerful and reliable tool for precisely predicting the optimal
onditions in the complicated systems such as the nonlinear and
ime-variant biological processes [12].

ANN is a nonlinear estimation technique which processes
nformation in a way that resembles the human brain. ANN
earns the patterns from historical datasets and generalizes about
he mathematical relationships between input variables and their
orresponding output value. The main advantage of the ANN
pproach over traditional methods is that it does not require
n explicit description of the complex nature of the underly-
ng process in a mathematical form [13]. So far, a variety of
NNs has been investigated and applied because of their wide

ange of suitability for assessing all kinds of complex systems
ith time variant, multiple variables, and nonlinear. The appli-

ations of such networks have found their use in many aspects
uch as ecological and environmental sciences [14]. For exam-
le, Acharya et al. [15] have successfully predicted sulphur

emoval by Acidithiobacillus spp. using ANN. Nagendra and
hare [16] have adopted ANN to model nitrogen dioxide disper-

ion from vehicular exhaust emissions. In addition, Yu et al. [17]
nd Sarangi and Bhattacharya [18] have compared ANN with

t
i
t
o
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everal nonlinear regression models in predicting shrimp growth
nd sediment loss from watershed, respectively, and their results
oth showed that ANN outperforms regression models for the
omplex set of conditions. Thus, ANN was adopted to predict
he growth of the indigenous A. thiooxidnas using four important
ariables of the growth medium: KH2PO4, (NH4)2SO4, MgSO4,
nd elemental sulfur (S0) as input in this study.

. Materials and methods

.1. Microorganism

The indigenous A. thiooxidans used throughout this study
as obtained from the sewerage samples from a sulfate-

ontaminated site near Keelung, Taiwan [4]. The general
rowth medium (N:P = 5:1; compositions (g/l): KH2PO4 = 1.0,
NH4)2SO4 = 2.54, MnSO4 = 0.02, MgSO4 = 0.1, CaCl2 = 0.03,
eCl3 = 0.02, powdered S0 = 5.0, nystatin = 0.1; pH 4.0) was
sed to cultivate this microorganism in a water-bath shaker
110 rpm) at 30 ◦C. Biomass concentrations and pH level were
eriodically measured over the entire cultivation time.

.2. Analytical methods

Aliquots of 10 ml were taken from the culture and filtered
hrough a general grade filter paper (Advantec, Tokyo, 90 mm)
o eliminate residual sulfur. Spectrophotometer at 620 nm was
erformed against the general gravimetric results to obtain a
alibration curve. By reading the turbidity of a given sample
ulture, the corresponding amount of biomass was obtained
1.00 OD620nm ∼= 0.98 ± 0.08 g/l DCW). The absorbance was
easured by DR/2000 spectrophotometer (HACH, Loveland,
O). Using pH 4.0 and 10.0 standard buffers (Fisher Sci-
ntific, Tokyo, Japan) for calibration, standard measurement
f pH was undertaken by using pH electrode and meter
Cole-Parmer, Vernon Hills, IL) with an accuracy of 0.1 pH
nit.

.3. Experimental design

Shake flask experiments were carried out for the growth of the
ndigenous A. thiooxidans using KH2PO4, (NH4)2SO4, MgSO4,
nd S0 as the four test variables. Experiments were performed
n sterilized 500 ml Erlenmeyer flasks with 10% of isolated bac-
erial cultures in 150 ml of the growth medium. 30 cultivation
xperiments were designed and summarized in Table 1, among
hich 22 and 8 sets were used as the training and testing sets,

espectively.

.4. Artificial neural network

So far, several types of ANNs such as feedback networks
nd feed-forward networks have been developed. The common

rait is that every network consists of several artificial neurons
n each layer. In general, the first layer is the input layer used
o receive information and the last one is the output layer to
btain the calculated results. Between them there are one or
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Table 1
The compositions of the growth medium for the 30 experimental runs in this
study, with 22 and 8 runs used as the training and testing sets, respectively

Experimental runs X1 X2 X3 X4

1 0.55 2.0 0.08 3
2 1.45 2.0 0.08 3
3 0.55 3.0 0.08 3
4 1.45 3.0 0.08 3
5 0.55 2.0 0.20 3
6 1.45 2.0 0.20 3
7 0.55 3.0 0.20 3
8 1.45 3.0 0.20 3
9 0.55 2.0 0.08 7

10 1.45 2.0 0.08 7
11 0.55 3.0 0.08 7
12 1.45 3.0 0.08 7
13 0.55 2.0 0.2.0 7
14 1.45 2.0 0.2.0 7
15 0.55 3.0 0.2.0 7
16 1.45 3.0 0.2.0 7
17 0.10 2.5 0.14 5
18 1.90 2.5 0.14 5
19 1.00 1.5 0.14 5
20 1.00 3.5 0.14 5
21 1.00 2.5 0.02 5
22 1.00 2.5 0.26 5
23 1.00 2.5 0.14 1
24 1.00 2.5 0.14 9
25 1.00 2.5 0.14 11
26 1.00 2.5 0.14 13
27 1.00 2.5 0.14 15
28 1.00 2.5 0.14 17
29 1.00 2.5 0.14 19
3
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1: KH2PO4 (g/l), X2: (NH4)2SO4 (g/l), X3: MgSO4 (g/l), and X4: S0 (g/l).

everal neuron layers, the so-called “hidden layers”. The most
idely applied ANN is the multi-layer feedforward perceptron

MLP) network. This kind of neural network consists of three

ayers: a layer of input units is connected to a layer of hidden
nits, which is connected to a layer of output units (Fig. 1). The
umber of neurons in the input and the output layers depends
n the respective number of input and output parameters taken

ig. 1. Multi-layer feedforward perceptron (MLP) network model used in this
tudy.
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nto consideration. However, the hidden layer may contain zero
r more neurons. The activity of the input layer represents the
aw information that is fed into the network. The activity of
ach hidden neuron is determined by the activities of the input
eurons and the weights on the connections between the input
nd the hidden neurons. The behavior of the output neurons
epends on the activity of the hidden neurons and the weights
etween the hidden neurons. The weighted sums of the outputs
rom the input and the hidden layers are given by Eqs. (1) and
2), respectively:

j = f

(
d∑

i=0

Wi,jXi + Bj

)
(1)

k = g

⎛
⎝ m∑

j=0

Wk,jNj + bk

⎞
⎠ (2)

here, Nj is the output of jth hidden neuron, Wi,j the weight
etween ith input neuron and jth hidden neuron, Xi the output
f ith input neuron, Bj the bias of jth hidden neuron, d the total
umber of input neurons, Yk the output of kth output neuron,
k,j the weight between jth hidden neurons and kth output neu-

on, bk the bias of kth output neuron, m the total number of
idden neurons, and f and g are the transfer functions. In the
raining phase, one set of data was fed into the network at a
ime and the weights and bias were optimized and then the error
etween the experimental results and the estimated outputs was
inimized.

.5. Testing the ANN approach

In Fig. 1, inputs 1–4 refer to the concentrations of KH2PO4,
NH4)2SO4, MgSO4, and S0. The output is the DCW of the
ndigenous A. thiooxidans. The number of the hidden neurons
as obtained by trial and error method to minimize the error
etween the experimental and estimated results. In addition, dif-
erent combinations of the transfer functions used in the hidden
nd the output layers also influence the error. Mean squared error
MSE) was used as the index to determine the best combination
f the transfer functions used in hidden and the output layers as
ollows:

SE =
∑

(DEXP − DEST)2

n
(3)

In this study, 10 commonly used transfer functions listed in
able 2 were screened for the hidden and the output layers.
he resulting MSE values for these combinations of transfer

unctions are shown in Fig. 2. It reveals that the minimized MSE
as obtained when the transfer functions used for the hidden

nd the output layers are Gaussian and Sigmoid, respectively.
inally, mean relation deviation (RD) was used to determine the

rediction accuracy of the ANN model:

D = 1

n

∑∣∣∣∣DEXP − DEST

DEXP

∣∣∣∣ . (4)
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Table 2
The transfer functions tested in this study

Serial no. Transfer function Formula

1 Hard limit transfer function f (x) =
{

0, if x < 0
1, if x ≥ 0

2 Symmetrical hard limit transfer function f (x) =
{

−1, if x < 0
1, if x ≥ 0

3 Saturating linear transfer function f (x) =
{

0, if x < 0
x, if 0 ≤ x ≤ 1
1, if x > 1

4 Symmetrical Saturating linear transfer function f (x) =
{−1, if x < −1

x, if − 1 ≤ x ≤ 1
1, if x > 1

5 Positive linear transfer function f (x) =
{

0, if x < 0
x, if x ≥ 0

6 Linear transfer function f(x) = x

7 Sigmoid transfer function f (x) = 1
1+e−x

8 Hyperbolic tangent transfer function f (x) = ex−e−x

ex+e−x

9 Triangular basis transfer function f (x) =

⎧⎪⎪⎨
⎪⎪

0, if x < −1
1 + x, if − 1 ≤ x < 0
1, if x = 0
1 − x, if 0 < x ≤ 1

10 Gaussian transfer function

Fig. 2. The MSE values of different combinations of the transfer functions used
in the hidden and output layers. The numbers in the x- and y-axis represent the
serial numbers shown in Table 2. Please note that in order to clearly demonstrate
that the minimized MSE value (Z = 1.22 × 10−4) was obtained when Gaus-
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Fig. 3 shows the results of the comparison between the DCW
of the indigenous A. thiooxidans from the experimental and esti-
mated results in the training set. The R2 value and the slope

Table 3
Weights for the hidden layer

Neuron number in the hidden layer

1 2 3 4

Bias in input layer −3.7270 3.20977 −6.62802 2.73275
ian (serial no. 10) and Sigmoid (serial no. 7) transfer functions were chosen
or the hidden and output layers, respectively, some MSE values of the other
ombinations of the transfer functions are not shown in this figure.

. Results and discussion

Although ANN is a powerful tool to predict the nonlinear or

ime-variant systems [12], different combinations of the transfer
unctions used in the hidden and the output layers show signif-
cant effects on the prediction accuracy. In order to obtain the
ptimal combination of the transfer functions in the hidden and

I
I
I
I

⎩
0, if x > 1

f (x) = e−x2/2

he output layers, trial and error method was applied to minimize
he error between the estimated and experimental results. The
esults of the combinations of the 10 commonly used transfer
unctions listed in Table 2 for the hidden and the output layers
n the ANN model are shown in Fig. 2. The numbers in the x-
nd y-axis are the serial numbers for the transfer functions given
n Table 2. z-Axis shows the MSE values, which represent the
eviations between the estimated and experimental results, for
hese combinations of different transfer functions. The results
eveal that the minimized MSE (Z = 1.22 × 10−4) was obtained
hen Gaussian (serial no. 10) and Sigmoid (serial no. 7) transfer

unctions were chosen for the hidden and output layers, respec-
ively. Using these two transfer functions, the weights and bias
or the hidden and output layers can be obtained and the results
re presented in Tables 3 and 4, respectively. A total of 30 sets
f data were employed in the present study, out of which 22
ets were used for training the ANN model and 8 for testing the
nput, X1 −12.1281 3.60308 12.6844 7.5894
nput, X2 4.87858 1.94767 20.2078 −32.3476
nput, X3 34.3849 68.8834 4.65543 43.3003
nput, X4 22.5623 −2.84966 1.78166 26.3071
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Table 4
Weights for the output layer

Output

Bias in hidden layer 0.22007
Hidden layer neuron 1 −1.50763
Hidden layer neuron 2 20.3030
Hidden layer neuron 3 13.6081
Hidden layer neuron 4 −16.5142

F
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b
0
s
s
t
R
t
A
n

F
s

Table 5
Screening range for the optimal composition of the growth medium for the
indigenous A. thiooxidans using the ANN model developed in this study

X1 X2 X3 X4

Minimum value 1.0 3.5 0.65 15
Maximum value 3.7 6 0.80 45
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ig. 3. Parity plot for the DCW of the indigenous A. thiooxidans in the training
et.

etween the estimated and experimental DCW are 0.9765 and
.99, respectively, indicating that the ANN model used in this
tudy is satisfactory. Fig. 4 gives the results of the compari-
on between the DCW of the indigenous A. thiooxidans from
he experimental and estimated results in the testing set. The
2 value and the slope between the estimated and experimen-
al DCW are 0.9910 and 1.03, respectively, indicating that the
NN model could estimate the dry cell weight of the indige-
ous A. thiooxidans quite satisfactory in most of the cases, with

ig. 4. Parity plot for the DCW of the indigenous A. thiooxidans in the testing
et.
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nterval 0.1 0.1 0.01 1.0

1: KH2PO4 (g/l), X2: (NH4)2SO4 (g/l), X3: MgSO4 (g/l), and X4: S0 (g/l).

he minimum and maximum deviations between the estimated
nd experimental DCW being only 0.002 and 0.031 g/l, respec-
ively. The precise prediction of the DCW the indigenous A.
hiooxidans indicates that the ANN model used in this study
s a powerful tool in predicting the nonlinear and time-variant
iological processes [12].

In order to validate the ANN model used in this
tudy in obtaining the optimal medium composition for the
ndigenous A. thiooxidans, the optimal medium composi-
ion (KH2PO4 = 3.5 g/l, (NH4)2SO4 = 4.9 g/l, MnSO4 = 0.02 g/l,

gSO4 = 0.74 g/l, and S0 = 23.7 g/l) obtained from our previ-
us study using response surface methodology (RSM) [19]
as further fed as input in the network. The optimal DCW

stimated by RSM and ANN were 0.720 and 0.722 g/l, respec-
ively. The optimal DCW is defined as the DCW obtained by
pplying the optimal medium composition, which is obtained
ither from RSM or ANN prediction. It is again an exhil-
rating result to prove the practicability of the ANN model
eveloped in this study. However, although the ANN model
eveloped in this study can yield very similar DCW by inputting
he optimal medium composition predicted from the previ-
us RSM experiments [19], it does not mean that the same
ptimized medium composition can be obtained by these two
ethods. To search for the optimal medium composition using

he ANN model developed in this study, a variety of com-
ination for KH2PO4, (NH4)2SO4, MgSO4, and S0, was fed
s input in the network. The screening range and interval
f the compositions are presented in Table 5. The optimal
edium composition was then obtained as KH2PO4 = 1.0 g/l,

NH4)2SO4 = 3.5 g/l, MgSO4 = 0.65 g/l, and S0 = 23 g/l, with the
ptimal DCW = 0.719 g/l. The optimal compositions obtained
sing RSM and ANN were compared in Table 6. The concen-

rations of KH2PO4, (NH4)2SO4, and MgSO4 in the optimized
edium composition determined using RSM are 3.5, 1.4, and

.1 times, respectively, comparing to those obtained using ANN.

able 6
omparison of the compositions of the optimal growth mediums predicted by

rom response surface methodology (RSM) and artificial neural network (ANN)

ariable (g/l) Method

RSMa ANN

H2PO4 3.5 1.0
NH4)SO4 4.9 3.5

gSO4 0.74 0.65
0 23.7 23.0

a Data from Liu et al. [19].
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owever, these two methods yield very similar concentrations
f S0 (23.7 g/l versus 23.0 g/l) and DCW (0.720 g/l versus
.719 g/l).

Previous contour plots obtained using RSM demonstrated
hat the growth of the indigenous A. thiooxidans is not depen-
ent of the concentrations of KH2PO4, (NH4)2SO4, and MgSO4,
hereas S0 is the sole component affecting the amount of the
CW produced [19]. The non-elliptical nature of these con-

our plots further depicted that there is no mutual interaction
etween S0 and each of the other three variables. The present
esults showing that the same optimized concentration of the
lemental sulfur using different methods are in good agreement
ith our previous study [19]. Although the entire metabolic
athway and the nature of the multi-enzyme systems involved
n the degradation of elemental sulfur are not clearly under-
tood, the role of elemental sulfur in the growth of cells as
result of primary metabolism of the indigenous A. thiooxi-

ans has been well recognized. Although elemental sulfur has
een substituted with some other alternative substrate in the
rowth medium for the sake of cell separation and concen-
ration measurement in the previous study [2], the amount of
ulfuric acid produced was much less than the medium with
lemental sulfur. It indicates that A. thiooxidans has the pref-
rence to utilize solid substrate as energy source. With respect
o economic considerations, the optimal medium composition
btained from ANN seems to be more practical comparing to that
btained from RSM in order to produce the same amount of the
CW.
In the present study, the number of experimental data was

nsufficient. If a large data set is included, the accuracy of the
NN model can be further improved. Another approach would
e to carry out the experiments as per design of experiment
DOE), so that the number of experiments can be dramati-
ally reduced while retaining all the vital information of the
ariables under study (i.e., the effect of one parameter, two
arameter interaction or even higher interactions if there are
ore numbers of the variables as input to the system. The ANN
odel developed in this study can be further used in other sys-

ems of bacterial processes with great advantages since it was
bserved that the DCW could be satisfactorily estimated using
his model. The larger training and testing sets would greatly
nhance the versatility of the resulting ANN model, which can
urther be used as an expert system in order to optimize the
omposition of the growth medium for various microorganisms
ithin the range of the operating conditions used in the training

et.

. Conclusions

The most common biological models were developed from
he physical and chemical principles by applying theories of

ass, momentum, and energy conservation. However, such
odels usually fail to predict the realistic behaviors during

icrobial growth or bioleaching [20]. The multiplicity of factors

ffecting the microbial growth or bioleaching process makes it
ifficult for developing a practical mathematic model. In con-
rast, approximation models such as ANNs are very powerful and

[
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eliable in predicting the complex conditions such as nonlinear
nd time-variant biological processes [12]. Previous applica-
ions of ANN used for similar microbial processes include the
rediction of solubilization of heavy metals from municipal
ludge in batch process using A. thiooxidans and A. thioparus
21] and the prediction of metal bioleaching from municipal
ludge in a continuous process using A. ferrooxidans [22]. In
his study, we developed a three layer feed forward MLP neu-
al network model to predict the growth of the indigenous A.
hiooxidans. The Gaussian and Sigmoid transfer functions were
elected for the hidden and output layers, respectively, with
he minimal MSE (1.22 × 10−4). The resulting ANN model
ives a satisfactory prediction of the DCW for the testing set
ith R2 = 0.991 and RD = 0.026. We further determined the
ptimal composition of the growth medium for the indige-
ous A. thiooxidans as KH2PO4 = 1.0 g/l, (NH4)2SO4 = 3.5 g/l,
gSO4 = 0.65 g/l, and S0 = 23 g/l, where the maximal DCW of

.722 g/l was obtained. The present results are in accord with the
revious findings suggesting that ANN is a powerful tool to study
he nonlinear and time-variant biological processes [12]. How-
ver, unlike the first principle models, the ANN model, being
mpirical in nature, cannot be extrapolated beyond the range of
he variables for which it is trained. Thus, care must be taken to
se model only within this range.
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